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The article presents the averaged equations of mass, momentum, and energy transfer 
for the zones of the ring and the core of spouted beds. An analytical relation 
for determining the diameter of the bed diameter is given. 

Spouting is an efficient method of bringing the particles of the processed material in 
contact with gases or liquids, and it is ever more widely used in practice. A topical prob- 
lem is therefore the selection of the hydrodynamic regimes ensuring intense mass and heat ex- 
change, and the investigation of the mass transfer processes occurring in spouted bed appara- 
tus. 

Although many authors [1-4] investigated the processes in spouted beds, so far we lack 
the theoretical foundations for describing the processes with phase transformations in appara- 
tus of this type, based on strict relations of the thermomechanics of multiphase media. The 
result is a large number of empirical relationships of special nature which are badly repro- 
ducible on equipment of different size, and in particular, we have no strict analysis of the 
interaction of the streams in the zones of the core and the ring, taking the changes of their 
configuration into account. 

The present article describes the mass, momentum, and energy transfer in the zones of the 
core and the ring with a view of the entrainment of gas from the core to the spout ring, the 
polydispersity of the disperse phase, and phase transitions on the basis of the mechanics of 
heterogeneous media. An analysis of the entropy of the system yielded a relation for deter- 
mining the profile of the core under conditions of stable spouting. 

A spouted bed apparatus may be divided into two zones: the zone of the core characterized 
by the ascending stream of the fluidized agent and particles, high speeds of the gas and the 
particles, great porosity, and the zone of the ring where the disperse phase in countercurrent 
to the fluidizing agent descends, being characterized by lower speed of the gas and smaller 
porosity than in the core. 

We examine the steady-state case of operation of the apparatus taking into acco,unt the 
radial transfer of gas from the core to the ring, but we do not take into account radial par- 
ticle transfer or effects connected with a change of the interphase surface such as crumbling, 
coalescence, aggregation, etc. 

In each zone we examine a multispeed, multitemperature medium taking into account the as- 
sumptions adopted in [5, 6]. The first phase is.the carrier phase, i.e., a gas ascending with 
speed v: and having the temperature T~, the m-th phase are particles or drops whose mass lies 
within the limits (m -- dm, m + dm), moving at the speed v= and having the temperature T=. We 
use the system of equations of thermohydrodynamics for describing processes with phase trans- 
formations (taking the polydispersity of inclusions into account) at a local point of the ap- 
paratus obtained in [5, 6], and wewrite the differential equation of the conservation of mass 
of the carrier phase in the zone of the spout core in projections onto the axis of the appara- 
tus : 
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By using the Green formula [7], we change the second and third terms on the left-hand side of 
Eq. (i) to the form 

P,cV c f l Fc  + p.v:c=dY- p,~=cudz = - -  2 _ p,cveudz ,'~ 4p~vje~ ~ .  
, L.C 

Integration over the closed contour enabled us to eliminate the projection of the speed onto 
the z axis (here we take as the positive direction the direction opposite to the entrainment 
of the gas from the core). Then the equation of continuity of the carrier phase in the spout 
core (i) may be represented as follows: 
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d (PlcVacxFc) = ~ldmFc-: 4P,cV:cyd c, ( 2 )  
d x .  
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where the last term on the right-hand side of Eq. (2) takes into account the entrainment of 
gas from the core to the ring. 

We write the differential equations of the conservation of momentum for the carrier phase 
in projections onto the axis of the apparatus: 
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Using the Green formula [7], we transform the second and third terms on the left-hand side of 
Eqs. (3) and (4) into 
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Taking into account expressions (5), (6), and the relation 
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we transform the equations of motion of the carrier phase (3) and (4): 
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Equation (8) characterizes the change of the mean speed of the carrier phase in the core 
of the stream in the projection onto the axis of the apparatus. It follows from Eq. (9) that 
the change of speed of gas entrainment from the core to the ring along the axis of the appara- 
tus proceeds on account of a change of pressure gradient in the section (Pc # PK ) over the 
height of the apparatus. We average similarly the other equations of the system obtained in 
[5] for the zones of the core and of the ring, and we write the mathematical model of the pro- 
cesses with phase transformations in spouted bed apparatus. 

Model of Processes with Phase Transformations in 

Spouted Bed Apparatus 

Zone of the Core. The equations of conservation of mass and of the balance of the number 
of particles are: 
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Equations (i0) and (Ii) characterize the change of mass of the carrier phase and of a 
separate component in the spout core over the height of the apparatus with a view to the en- 
trainment of gas into the ring zone and to the phase transformation. Equation (12) expresses 
the change of the number of particles in the spout core over the height of the apparatus; we 
neglect radial particle transfer. 

The equations of motion of the carrier phase and of the m-th phase are: 
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Equations (13) and (14) characterize the change of the projections of the speed vector of 
the carrier phase over the height of the apparatus taking into account the mass transfer from 
the zone of the core to the ring zone, phase transformations, interaction between the streams 
of carrier phase in the zone of the core and of the ring, and interaction between the carrier 
phase and inclusions. Equation (15) expresses the change of speed of the m-th phase taking 
into account the phase transformation, the polydispersity of the disperse phase, and interac- 
tion with the carrier phase. 

The equations of change of energy of the carrier and m-th phases are: 

^ dTlc = - - A h  fc~ldmFc-- 4aa2~Qfc(Tlc--T~)dmFc~ P~cCplcv~F~ dx 
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~m~ecxCP. ~ ,T~e =4~a2~Q ~(T1 e _  T~c)" (17) 
' - dx 

Equation (16) characterizes the change of temperature of the carrier phase in the spout 
core over the height of the apparatus, taking into account the phase transformation (it is ac- 
cepted that the heat of phase transformation is liberated or consumed by the phase with higher 
thermal conductivity), the heat exchange between the carrier phase and the inclusions, energy 
dissipation on account of interaction of the carrier phase with the m-th phase, interaction 
between the streams of carrier phase in the zone of the core and of the ring on account of 
nonequilibrium exchange of momentum in phase transformations. Equation (17) characterizes the 
change of temperature of the m-th phase over the height of the apparatus due to heat exchange 
with the carrier phase. 

The equation of state of the carrier phase in the spout core is: 

Pc = P?oRT1c. (18) 

Zone of the Ring. The equations of conservation of mass and of the balance of the number 
of particles are: 
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The equations of motion of the carrier and the m-th phases are: 
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The equations of change of energy of the carrier and the m-th phases are: 
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(25) 

The equation of State of the carrier phase in the zone of the ring is: 

(26) 

Boundary conditions: lower 
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zone of the core zone of the ring 

PlCvlcxFc ] . . . . . .  -~- ~.)IHVl~:~F,{ ....... -= Glo, 

Vjc~ = 0, Plc! . . . .  = Plo, %~ = 0,4,  ci~=~ o = 0r 

c] . . . . . .  = Co, T~d.,-=Xo = Tlo, T,~} ....... = T1 o, T2r~[X=Xo --:- T2o, 

T.~.cL,-=zo = r,_,o, 

(27) 

(28) 

upper 

f)clv~<:c{Fdx=H + G2o = fcI4c, IFe[~=., (29) 

fitting condition 

f~{s . . . .  + Go = / c  lV2c {FcL,=~o, (30) 

condition for determining the spouting height (the mean masses of the inclusions at the upper- 
most point of the spout in the core and the ring are equal) 

M M 

M M ' 

0 x = H  0 x = H  

( 3 1 )  

Relations (27)-(31) fully determine the specification of the boundary conditions for the 
system (10)-(26). Here we took as the positive direction the upward direction along the axis 
of the apparatus, where F1c x = F~K x = g, Fac x = FaK x = g. The expressions for f1=, fcK, fcT, 

representing the interactions between the components of the mixture, are written analogously 
[8]: 

f12 = - - -  ~ , C12 = 012 ( R e l y ,  ~ 1 ) ;  
4 p~ dc [51~--v2,r 

[ c .  = Cc.~dcp'~ (v,~^ - -  vm~) 2, Cc. = co.  dc , R % ,  Rel,~ ; ( 3 2 )  

= cc~ = cc~ (RelK). 

For the complete closing of the system of hydromechanical equations describing processes 
with phase transformations in the spouted bed we have to know the shape and dimensions of the 
spout core. The relation for the diameter of the spout core we obtain from an analysis of the 
entropy of the system in the steady state. 

We adopt the hypothesis of local equilibrium within the limits of each phase, then the 
Gibbs relations apply: 

P l - -  
dlsl Pl dlux P d I 1 ~1 
dt = Tt dt + P l  T~ dt p~ T1 Pl 

[fit d2s2 [tn d2u2 + [ m  t9 d~ t 

dt T2 dt T 2 dt p2 

dlcl . (33) 

dt 

(34) 

Using the Gibbs relations (33), (34), the equations of change of energy (16), (17), and the 
equations of conservation of mass (i0), (ii), we write the expression for the origin of entro- 
py of the zone of the core relative to any cross section of the spout core: 

Dt ---" P ---D-f- dFc = [ TI (v~c~ - -  vl~x) + 

rc 
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M M M 

+ ~ ~ $m[~,~ ~,c: - -  b~x) am + F c 4aaZh.~Q (T~ - -  T=) • r~ T, 

0 0 0 

Each t e rm in  e x p r e s s i o n  (35) i s  t he  p r o d u c t  of  t h e  thermodynamic  f o r c e s  and t h e  the rmodynamic  
s t r e a m s .  In t he  s t a b l e  s t e a d y  s t a t e  a l l  moving f o r c e s  a r e  c o n s t a n t .  We w r i t e  r e l a t i o n  (35) 
in  t he  form 

M M M 

0 0 0 

where xF K = (V~cx -- ViKx )/T~ is the moving force of interaction between the zones of the spout 

core and the ring, determined by the difference of speed of the carrier phase in the zones of 

the core and the ring; xF2 = (Vlcx --V=cx )/TI is the moving force of interaction between the 

carrier force and the inclusions, determined by the difference of the speeds of the carrier 

phase and of the inclusions in the spout core; X TI2 ---- .I T~I TII .) is the moving force of heat 

exchange between the carrier phase and the inclusions, determined by the temperature differ- 
ence between the phases; xM2 is the moving force of mass exchange between the carrier phase 
and the inclusions, determined by the difference between the chemical potentials in the car- 
rier phase and in the inclusions [9]; jF cK = fcK is the flux of the mechanical interaction 

force between the zones of the core and the ring, determined by relation (32); JF 2 = f:= is 
the flux of the mechanical interaction force between the carrier phase and the inclusions, de- 
termined by relation (32); JT2 = 4~a=fQ (TI --T2) is the flux of the thermodynamic force of 

heat exchange; jM= = f~dm is the flux of the thermodynamic force of mass exchange. 

The dependences jnj = f(xnj) [n = F, F, T, M; i = c, i, i, I; f = K, 2, 2, 2] are unknown 

in the general form. However, taking into account that when the system as a whole is in equi- 
librium, there are no fluxes and the moving forces are equal to zero, we expand the functions 
into Taylor series with respect to the state of equilibrium: 

n X n :~- iz " . . , J .  = ( , j )  (o) + CO) + + 
(36) 

In=F, F, T, M; i = c ,  1, 1, 1; ] = K ,  2, 2, 2]. 

When there are small deviations of the system from equilibrium, the linear kinetic rela- 
tions between the thermodynamic fluxes and forces are correct: 

J~. = ~.~.X ~. 

[n=-F, F, T, M; i = c ,  1, 1, 1; ] = K ,  2, 2, 21. (37) 

It is easy to see that formula (32) for determining fcK is a special case of relation (36). 

F Assume that the system is subject to perturbation along the force XcK (e.g., random fluc- 

tuations changing the profile of the spout core), while all the other variables X~. (n ~ F, T, 
l] 

M; i # c; j # K) remain unchanged. Then, taking relation (36) into account, the change of ori- 
gin of entropy by this variable will have the form 

+ 0-2g  

The f o l l o w i n g  r e l a t i o n  c o r r e s p o n d s  to  t h e  minimum change o f  o r i g i n  o f  e n t r o p y :  

(3S) 
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The force of the resistance between the zones of the spout core and ring may be repre- 
sented in the form 

G -  A 
Rel~ (39) 

-- laminar regime or 

~el~ F F ~---" ~ , K ,  F F F 

fo.= G(.G) 
(40) 

-- self-similar regime 

F , P 

Pci PcK (x&). 

Then the following relation (in deriving it we took into account the dependences (39) and (40)) 
corresponds to the minimum of origin of entropy for the two cases of regimes (laminar and self- 
similar): 

min [fcK ] . (41) 

Consequently, when the moving force of interaction between the zones of the spout core 
and ring deviates from the steady state, the endeavor of the entropy to inhibit its departure 
from the previous state is most strongly fulfilled when the relations (38), (41) are fulfilled: 
the spout core assumes the shape that puts up the least resistance to the gas stream. If the 
shape of the core is stable, then in every section along the axis of the core of the spouted 
bed either condition (38) or condition (41), depending on the flow regime, has to be fulfilled. 
From relations (38), (41) we determine the diameter of the spout core at every point over the 
height of the apparatus. The papers [I0, ii] confirm experimentally the correctness of rela- 
tions (38) and (41). The conditions (38) and (41) together with relations (27)-(31) and the 
specification of the kinetics of phase transformations close the system of equations (10)-(26). 

Thus we obtained a generalized system of hydromechanical equations which may serve as the 
basis of the full mathematical description of multiphase, multicomponent mixtures with process- 
es of heat and mass transfer in spouted bed apparatus. 

NOTATION 

f(m)dm, number of particles per unit volume whose mass lies within the limits [m -- dm, 
m + dm]; m, mass of the inclusions; M, mass of the largest inclusions; p, p:, mean density of 
the mixture and of the carrier phase, respectively; p?, p~, true density of the carrier phase 
and of the inclusion, respectively; v:, v2, speed of the carrier phase and of the m-th phase, 
respectively; ~, observed rate of change of mass of the inclusion (in our case decrease of 
mass) per unit volume; t, time; x, y, z, coordinate system; x, direction of the axis of the 
apparatus; F, cross-sectional area; L, length of the closed curve bordering the core section; 
d, diameter; c, concentration of a component (kg/m3); P, pressure; f~2(m), force of interac- 
tion between the carrier phase and an inclusion with mass m; F i, mass force acting on the i-th 
phase; ~i' volume content of i-th phase; fcK, force of interaction between the zones of the 
core and the ring of the spouted bed; fcT, force of interaction between the carrier phase and 
the apparatus wall; Re, Reynolds number; r, a, volume and radius of the inclusion, respective- 
ly; Ti, temperature of the i-th phase; R, universal gas constant; Ah, heat of phase transfor- 
mation; ~Q, heat transfer coefficient from carrier phase to inclusion; Cpi, heat capacity of 
the i-th phase; G, mass rate of the gas; H, spouting height; g, acceleration of gravity; c~2, 
resistance coefficient in interaction between carrier phase and inclusion; CcK, coefficient 
of friction in interaction between the carrier phases in the zone of the core and of the ring; 
CcT , resistance coefficient in interaction between the carrier phase in the zone of the ring 
and the apparatus wall; ~, chemical potential of a component in the carrier phase; S, s~, s2, 
specific entropies of the mixture, the carrier, and the m-th phases, respectively; X, moving 
force; J, thermodynamic flux; ~, kinetic coefficient; A, constant. Subscripts: I) relates to 
the carrier phase; 2) relates to the disperse phase; c, core; K, ring; O, initial state; cT, 
wall; x, y, z, projections onto the 0x, 0y, and 0z axes, respectively; ^, mean value over the 
cross section. 
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HYDRODYNAMICS OF MIXING OF LIQUID--SOLID SYSTEMS 

M. D. Gluz UDC 66.063.8 

We presen t a model of the process of distribution of solid particles over the volume 
of a mixer. We analyze the kinetics of suspension, and show there is agreement be- 
tween experimental and calculated data. 

In carrying out reactions it is necessary to know the solution of the problem of mixing 
of solid particles in a liquid. A major part of the investigation of this problem seemed to 
be the determination of the operating conditions of a mixer to ensure suspension of the solid 
particles. These conditions were described by the minimum rotational speed no of the mixer 
[1-4], of the specific power c v = N/V a [5, 6]. The effect of the size of the devices was 
studied in detail in [1-3] and in [7]. However, the kinetics of the formation of a suspen- 
sion, and the effect of mixing on the homogeneity of the particle distribution in the active 
volume of a reactor were hardly studied, although these phenomena are important in carrying 
out chemical transformations such as condensation polymerization. 

In the present article we study the hydrodynamics of mixing of liquid-solid systems on 
the basis of the circulation cell model proposed earlier [8]. According to this model the ac- 
tive volume of the reactor is divided into cells by intersecting horizontal and vertical 
planes. The displacement of a liquid particle and its macromixing are described by a system 
of material balance equations formulated for each cell, taking account of flow conditions. 
The flow rates through the cell faces are determined from the calculated velocities w~, Wr, w z 
of the medium at the plane faces of the cells by using an analytic model of the spatial hydro- 
dynamics of mixers [9]. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 2, pp. 189-195, August, 
1983. Original article submitted April 13,1982. 
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